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Abstract. In this paper we introduce stochastic models that charac-
terize the structure of typical television program genres. We show how
video sequences can be represented using discrete-symbol sequences de-
rived from shot features. We then use these sequences to build HMM and
hybrid HMM-SCFG models which are used to automatically classify the
sequences into genres. In contrast to previous methods for using SCGFs
for video processing, we use unsupervised training without an a priori
grammar.

1 Introduction

In this paper we investigate the problem of building stochastic models that
characterize the structure of various types of television programs. Our models
are based on the idea of segmenting the video sequence into shots and labeling
each shot using a discrete-valued label. These labels are then used to build
video structure models based on hidden Markov models (HMMs) and stochastic
context-free grammars (SCFGs).

We present the application of these models to the task of automatically clas-
sifying a given program to one of a specified set of program genres. However,
we believe that the video sequence analysis paradigm we have developed will
have applicability to a much wider range of video analysis problems, such as
video sequence matching and generation of table-of-content views for programs.
Furthermore, in addition to being useful in solving these problems, the models
themselves can provide us with valuable insight about common characteristics
of the sequences within the same program genre.

HMMs and SCFGs have previously been applied to a number of video analysis
problems, mainly for gesture recognition and event detection. Most of these
techniques use a hand-designed state topology or grammar, which works well for
the problem at hand but is hard to generalize to different application domains.
For example, it is not obvious how a grammar can be designed for programs
like sitcoms or soap operas. We propose an unsupervised approach where the
grammar is automatically learned from training data.

The paper is organized as follows: In Section 2 we describe the features
extracted from video and how they are used to derive shot labels. Section 3



briefly establishes HMMs, SCFGs, and related terminology. In Section 4 we
introduce our model for video analysis which is a hybrid HMM-SCFG model.
Finally, in Section 5 we present results of our experiments, and discuss possible
further applications of our model in Section 6.

2 Shot Feature Extraction and Labeling

In this section we describe how we generate discrete shot labels which are used
in building stochastic models for video sequences, as will be discussed in later
sections. Our goal is to derive shot labels that correlate well with the semantic
content of the shots and are easily derivable from the compressed video stream
with reasonable computational burden.

The first processing step in obtaining shot labels is determining the shot
boundaries in the given video sequence. For this paper we have used ground
truth shot boundary locations determined by a human operator although robust
methods exist [1] to perform this task automatically with high accuracy. After
shot boundary locations are determined, a number of features are extracted from
each frame in the video sequence. These features are then aggregated to obtain a
feature vector for each shot. Finally, clustering is used to derive the shot labels.

2.1 Shot feature extraction

We extract a feature vector from each shot containing features that represent
the editing pattern and the motion, color, and texture content of the shot. The
distribution of shot lengths is an important indicator of the genre and the tempo
of the video program [2] so shot length in frames was chosen as a feature.

The amount of object or camera motion also provides important clues about
the semantic content of the shot. Shot length and some measure of average shot
activity have been shown to be useful features in classifying movie sequences to
different genres [3, 2]. In order to derive the shot motion feature, we first compute
the following motion feature for each frame in the sequence

1

#blocks with MVs

∑
blocks with MVs

(MVx)2 + (MVy)2

where MVx and MVy are the horizontal and vertical components, respectively,
of the motion vector for each macroblock in the frame. The motion feature for
the shot is then computed by averaging these values over the length of the shot.

We enhance these two basic shot features by three additional features based
on the color and texture of the shot frames. The color features are obtained by
averaging the pixel luminance and chrominance values within each frame and
over the shot. The texture feature is calculated by averaging the variance of
pixel luminance values for each macroblock within each frame and averaging
these values for the shot.

At the end of the shot feature extraction process each video sequence is
represented by a sequence of shot feature vectors {Gj} (we use {Gj} to denote



random vectors and {gj} for their realizations) where each shot feature vector
Gj has a dimensionality of n = 5.

2.2 Shot feature vector clustering and generation of shot labels

After the shot feature vectors are extracted from shots for all the video sequences
in our training data set, they are modelled using a Gaussian mixture model. We
use the Expectation-Maximization (EM) algorithm to estimate the parameters
of the mixture model and agglomerative clustering to estimate the number of
clusters from training data. In this approach the component mixtures are viewed
as clusters, and starting with a large number clusters, we merge two clusters at
each step until one cluster remains. The number of clusters which maximizes a
goodness-of-fit measure is chosen as the final model order.

We collect the shot feature vectors from all video sequences in the training set
and number them consecutively, obtaining the collection {Gj}Nj=1. We assume
that the probability density function (pdf), pk, for each cluster k is multivariate
Gaussian with parameters θk = (µk,Σk), where µk and Σk are the the mean
vector and the covariance matrix of the cluster, respectively. Then, assuming we
have K clusters in the mixture and that the shot feature vectors are iid, we can
write the log-likelihood for the whole collection as

L(Ψ) =
N∑
i=1

log

(
K∑
k=1

πkpk(gi; θk)

)
(1)

where Ψ = (θ1, . . . ,θK , π1, . . . , πK−1) is the complete set of parameters specify-
ing the model and πk is the probability that Gj belongs to cluster k, subject to

the constraint
∑K
k=1 πk = 1.

We then use a EM-based approach to find a local maximum of the likelihood
function to obtain the maximum likelihood estimate (MLE) of the parameter

vector, Ψ̂ML. Note that in the above formula we assumed that the number
of clusters were known, but this number also has to estimated. Unfortunately,
the MLE for the number of clusters, K̂ML, is not well-defined, since L(Ψ) can
always be increased by increasing the number of clusters for K̂ ≤ N . Methods
for estimating model order generally require the addition of an extra term to the
log-likelihood of Equation 1 that penalizes higher order models. We have used
the minimum description length (MDL) criterion [4], which is defined as

MDL(K,Ψ) = −L(Ψ) +
1

2
R log(Nn) (2)

where R is the number of real-valued numbers required to specify the parameters
of the model and n is the dimensionality of the feature vectors. In our case we
have

R = K

(
1 + n+

n(n+ 1)

2

)
− 1 (3)

and n = 5. The minimization of the above criterion is performed iteratively
using the EM algorithm. We start with a high number of initial clusters, usually



2-3 times the anticipated number of clusters, and at each step merge the two
clusters which cause the maximum decrease in the MDL criterion. This process
is continued until only one cluster is left. Then, the number of clusters for which
the minimum value of MDL was achieved is chosen as the estimate of the number
of clusters for the model, K̂ 1.

The mixture model estimated using the above procedure is then used to
obtain a discrete label for each shot feature vector. The label for each shot is
determined by the cluster number that the shot feature vector is most likely to
belong to, that is, given the shot feature vector, Gj , we determine the corre-
sponding shot label symbol, tj, using

tj = arg max
k∈{1,...,K̂}

pk(gj ; θk) (4)

where the shot label vj is an integer in the range {1, . . . , K̂}.

3 Hidden Markov Models and Stochastic Context-Free
Grammars

3.1 Hidden Markov Models

Hidden Markov models (HMMs) have been applied to various video analysis
tasks such as classifying programs into genres using audio [5], dialog detection [6],
and event detection [7, 8].

A HMM, λ, with N states and M output symbols is a 5-element structure
〈S, T ,A,B,π〉 where S = {s1, . . . , sN} is the set of states, T = {t1, . . . , tM} is
the set of output symbols, A is the N ×N state transition probability matrix,
B is the N ×M observation symbol probability distribution matrix, and π is
the N × 1 initial state distribution vector. Once the initial state is chosen using
π, at each value of the discrete time t, the HMM emits a symbol according
to the symbol probability distribution in current state, chooses another state
according to the state transition probability distribution for the current state,
and moves onto that state. The sequence of states that produce the output are
not observable and form a Markov chain.

In our approach the observations are discrete-valued shot labels that are
derived from each shot in the video sequence using Equation 4. We have used
ergodic or fully connected HMM topology, for which aij > 0, ∀i, j, that is every
state can be reached from any other.

Let there be L program genres that we want to use for classification. In order
to perform genre detection using HMMs, we train a HMM for each program genre
using the shot label sequences for the training video sequences. The standard
Baum-Welch algorithm is used in the training [9]. We then use these L HMMs as
a standard maximum a posteriori (MAP) classifier and classify a new sequence

1 The cluster software and further details about the implementation are available at
http://www.ece.purdue.edu/˜bouman/software/cluster/manual.pdf.



to the genre with the highest a posteriori probability. Assuming all genres are
equally likely, the classification of a given video sequence V is performed using
the equation

genre of V = max
k∈{1,...,L}

P (V | λk) (5)

where the probability P (S | λk) is obtained using the forward algorithm [9].

3.2 Stochastic Context-Free Grammars

Most video programs have a hierarchical structure where shots may be grouped
into scenes and scenes may be grouped into larger segments. Such a hierarchical
model for video suggests that shots that are far apart in the program may actu-
ally be semantically related. Linear models, such as HMMs, fail to model such
long-range dependencies within sequences. Therefore, hierarchical language mod-
els such as stochastic context-free grammars (SCFGs) may be more appropriate
for modelling video structure. In this section we present a brief introduction
to these models, for further details see [10]. SCFGs have been widely used in
natural-language processing but have not been used as often as HMMs for video
sequence analysis, except for some studies in video event recognition [11, 12].

Suppose we have a sets of symbols, I = {I1, . . . , IN}, called nonterminal
symbols. We define a production rule to be either a binary or unary mapping of
the form

Ii → IjIk or Ii → tl, Ii, Ij , Ik ∈ I, tl ∈ T (6)

where T is the set of terminal symbols, which is equivalent to the set of output
symbols used in the definition of an HMM. A SCFG, γ, is then specified as a
5-element structure 〈I, T ,R,P ,πroot〉 where R is the set of all unary and binary
rules of the form given in Equation 6, P is a set of probabilities associated with
each rule in R, and πroot is the initial probability distribution which determines
which nonterminal is chosen as the first state, which is called the root state 2

The rule probabilities in P are chosen so that they obey the constraints∑
j

∑
k

P (Ii → IjIk) +
∑
j

P (Ii → vj) = 1, i = 1, . . . , N.

After the root nonterminal is chosen using πroot, at each value of the discrete
time t, the SCFG chooses one of the rules originating from the current nonter-
minal and replaces the current node with the symbols on the right side of the
rule. This process is continued in a recursive fashion until there are no more
nonterminal symbols to be expanded, producing a tree structure which is called
a parse tree. Given a string, the probability assigned to it by the SCFG is the

2 The type of SCFG defined here is actually based on a special case of context-free
grammars called the Chomsky normal form. However, there is no loss of generality
since it can be shown that any SCFG can be transformed into an identical grammar
in the Chomsky normal form in the sense that the languages produced by the two
grammars will be identical.



sum of the probabilities for all the parse trees that could have produced the
given string.

One problem with SCFGs is that, compared with linear models like HMMs,
their training is slow. For each training sequence each iteration takes O(N3|V |3)
computations, where N is the number of nonterminals in the grammar and |V |
is the number of shots for the video sequence [13]. This makes training for longer
video programs impractical and makes using a MAP-based approach similar to
the one used for HMMs hard. In the next section we discuss our hybrid HMM-
SCFG approach which solves this problem.

4 The Hybrid HMM-SCFG Approach

In order to be able to train genre SCFGs in reasonable time, we propose a hybrid
approach. In this approach we train SCFGs for genres as follows: Let there be
L genres that we want to classify sequences into. We first train a HMM for
each genre using the sequences in the training set, thereby obtaining L HMMs,
λ1, . . . , λL. We then divide all the sequences in the training set into 10 pieces,
xj , j = 1, . . . , 10. This is done in order alleviate the problem of the sequences
being nonstationary over long intervals. For each sequence, we run each of the L
HMMs on each of the 10 pieces and obtain the log-likelihood value logP (xj | λl)
for each piece which are then arranged in a L×10 matrix of log-likelihood values.
t the end of this step each shot label sequence in the training set is represented
as a matrix of log-likelihood values obtained using HMMs.

Instead of training SCFGs directly on the shot label sequences, we use the log-
likelihood matrices obtained from the above step. In this way, the computation is
reduced from O(N3|V |3) computations to O(N3103) computations which brings
about significant savings in training time, since usually we have |V |3 � 103. In
order perform the grammar training in our approach, we introduce a new type
of nonterminal denoted by Ĩ l, which can only appear on the right side of a rule,
and change the form of the unary rules defined in Equation 6 to P (Ij → Ĩ l).
The special nonterminal Ĩ l takes on values in the range [1, L] and indicates the
particular HMM whose log-likelihood value will to be used to for that piece.
This implies that instead of the rule probability P (Ij → tl) we have the prob-
ability

∑
l P (Ij → Ĩ l)P (Ĩ l → xk). The probabilities P (Ĩ l → xk) = P (xk | λl)

are obtained from the HMM log-likelihood matrices, whereas the probabilities
P (Ij → Ĩ l) have to be estimated along with binary rule probabilities. We have
modified the standard SCFG training algorithm, called the inside-outside algo-
rithm [10], so that these probabilities can be estimated from the input HMM
log-likelihood matrices.

5 Experimental Results

We selected four program genres,soap operas, sitcoms, C-SPAN programs, and
sports programs for our experiments, and selected a total of 23 video sequences
from our video database that we believe represented the given genres. These



sequences were digitized at a rate of 2 Mbits/sec in SIF (352 × 240) format.
Commercials and credits in the sequences, if they exist, were edited out. The
locations and types of all the shot transitions in these sequences were recorded by
a human operator. Detailed information about the sequences are given in Table
1. All the sequences in the soap and comedy genres contain complete programs,
some of the sequences for other genres contain only parts of programs.

Table 1. Statistical information about the sequences used in the experiments.

genre # sequences avg length avg number
(minutes) of shots/seq

soap 11 14.3 140.1
comedy 11 20.2 264.4
cspan 14 28.1 59.5
sports 14 12.3 84.1

The sequences in each genre were divided into sets containing roughly the
same number of sequences. One of these sets were used as the training set, the
other as the test set for the algorithms. We clustered the shot feature vectors
obtained from the sequences in the training set, using the method described in
Section 2.2. The cluster parameters so obtained were then used to label the shots
of the sequences in both the training and test sets. We used six clusters, so the
number of terminal symbols, M = 6.

We performed two genre classification experiments. In Experiment I a HMM
for each genre was trained using the the training set and then used these HMMs
to classify the sequences in the test set where the genre of each sequence was
determined using Equation 5. The number of states of each HMM was set to
four. All the sequences in the training set were correctly classified. The results
for the test set are given in Table 2.

In Experiment II we used the same HMMs that were used for Experiment I
but we now used the hybrid SCFG-HMM model that was described in Section 4.
The number of terminal nodes of the SCFG was set to four. Again, all the
sequences in the training set were correctly classified. The results for the test set
are shown in Table 3.

6 Conclusions

In this paper we have examined the problem of unsupervised training of stochas-
tic models that characterize the structure of typical television program genres.
We showed how the computational complexity of training a SCFG may be greatly
reduced using a hybrid HMM-SCFG model and compared the results obtained
with this model and HMMs for the program genre classification task. For this
task, our model gave slightly better results than HMMs.



Table 2. HMM genre classification confusion matrix. HMMs of order 6 were used.

Classifier Output

True Label soap comedy cspan sports

soap 4 1 0 0
comedy 0 5 0 0
cspan 0 1 6 0
sports 0 0 0 6

Table 3. SCFG-HMM genre classification confusion matrix. The same HMMs as the
ones provided the results in Table 2 were used with a SCFG of 4 nonterminal nodes.

Classifier Output

True Label soap comedy cspan sports

soap 5 0 0 0
comedy 0 5 0 0
cspan 1 0 6 0
sports 0 0 0 6

As pointed in the introduction, the applicability of the shot label sequence
representation and our hybrid HMM-SCFG stochastic model go far beyond the
genre classification problem. The shot label sequences may be used to very ef-
ficiently search video databases for sequences similar to a query sequence. This
may be done using dynamic programming based on the sequence edit distance or
by using profile HMMs, such as the ones used for searching biological sequence
databases.

References

1. Taskiran, C., Bouman, C., Delp, E.J.: The ViBE video database system: An update
and further studies. In: Proceedings of the SPIE/IS&T Conference on Storage and
Retrieval for Media Databases 2000, San Jose, CA (2000) 199–207

2. Adams, B., Dorai, C., Venkatesh, S.: Study of shot length and motion as contribut-
ing factors to movie tempo. In: Proceedings of the ACM International Conference
on Multimedia, Los Angeles, CA (2000) 353–355

3. Vasconcelos, N., Lippman, A.: Statistical models of video structure for content
analysis and characterization. IEEE Transactions in Image Processing 9 (2000)
3–19

4. Rissanen, J.: A universal prior for integers and estimation by minimum description
length. The Annals of Statistics 11 (1983) 417–431

5. Liu, Z., Huang, J., Wang, Y.: Classification of TV programs based on audio infor-
mation using hidden Markov model. In: IEEE Second Workshop on Multimedia
Signal Processing, Redondo Beach, CA (1998) 27–32

6. Alatan, A.A., Akansu, A.N., Wolf, W.: Multi-modal dialog scene detection using
hidden Markov models for content-based multimedia indexing. Multimedia Tools
and Applications 14 (2001) 137–151



7. Brand, M., Kettnaker, V.: Discovery and segmentation of activities in video. IEEE
Transactions on Pattern Analysis and Machine Intelligence 22 (2000) 844–851

8. Xie, L., Chang, S.F., Divakaran, A., Sun, H.: Structure analysis of soccer video
with hidden Markov models. In: IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Orlando, Fl (2002)

9. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE 77 (1989) 257–285

10. Manning, C.D., Schutze, H.: Foundations of Statistical Natural Language Process-
ing. MIT Press, Cambridge, MA (1999)

11. Ivanov, Y.A., Bobick, A.: Recogition of visual activities and interactions by
stochastic parsing. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 22 (2000) 852–872

12. Moore, D., Essa, I.: Recognizing multitasked activities from video using stochastic
context-free grammar. In: Workshop on Models versus Exemplars in Computer
Vision in IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, Kauai, Hawaii (2001)

13. Lari, K., Young, S.J.: The estimation of stochastic context-free grammars using
the inside-outside algorithm. Computer Speech and Language 4 (1990) 35–56


